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Abstract—Dimensionality reduction (DR) is an important and
helpful preprocessing step for hyperspectral image (HSI) classifi-
cation. Recently, sparse graph embedding (SGE) has been widely
used in the DR of HSIs. SGE explores the sparsity of the HSI data
and can achieve good results. However, in most cases, locality is
more important than sparsity when learning the features of the
data. In this letter, we propose an extended SGE method: the
weighted sparse graph based DR (WSGDR) method for HSIs.
WSGDR explicitly encourages the sparse coding to be local and
pays more attention to those training pixels that are more simi-
lar to the test pixel in representing the test pixel. Furthermore,
WSGDR can offer data-adaptive neighborhoods, which results in
the proposed method being more robust to noise. The proposed
method was tested on two widely used HSI data sets, and the re-
sults suggest that WSGDR obtains sparser representation results.
Furthermore, the experimental results also confirm the superiority
of the proposed WSGDR method over the other state-of-the-art
DR methods.

Index Terms—Dimensionality reduction (DR), hyperspectral
image (HSI), nearest neighbor graph, sparse graph embedding
(SGE), weighted sparse coding.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are acquired by high-
spectral-resolution sensors and consist of hundreds of

contiguous narrow spectral bands. With the wealth of available
spectral information, hyperspectral imagery has become an
invaluable tool for the detection, identification, and classifica-
tion of materials and objects with complex compositions [1].
However, new challenges arise when dealing with extremely
large hyperspectral data sets [2], [3]. When the ratio between
the feature dimension (spectral bands) and the number of
data samples (in vector-based pixels) is vastly different, high-
dimensional data suffer from the well-known curse of dimen-
sionality. In addition, high-dimensionality data processing also
requires huge computational resources and storage capacities
[4]. It is therefore an important preprocessing step to reduce the
dimension of hyperspectral imagery.
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As a preprocessing step, dimensionality reduction (DR) tries
to find a low-dimensional representation for high-dimensional
data that may contain crucial information. To date, many
DR methods have been proposed for hyperspectral imagery.
These DR methods can be classified into unsupervised [5], [6],
supervised [7], [8], and semisupervised approaches [9]. Re-
cently, a general graph embedding (GE) framework [10] has
been proposed to formulate most of the existing DR methods. In
the GE framework, there are two main steps: graph construction
and projection computing. A graph is a mathematical repre-
sentation that describes the geometric structures of data nodes
[11]. In a graph, each element measures the similarity of a pair
of vertices. An appropriate graph provides a high level of DR
and preserves the manifold structures of the data. Traditionally,
k-nearest neighbor and ε-radius ball [12] have been used to con-
struct the graph. In [4], a new method which integrates the spa-
tial and spectral information of the HSI was proposed to learn
a local discriminant graph. In recent years, sparse representa-
tion (SR) [13] has been exploited to produce a graph whose
edges are intended to be sparse [14], [15]. This sparse graph
embedding (SGE) explores the sparsity structure of the data
and has been widely used in HSI DR. Ly et al. [11] proposed
block sparse graph based discriminant analysis (BSGDA),
which learns a block sparse graph for a supervised DR. In
[16], collaborative representation among labeled samples was
adopted to realize collaborative graph based discriminant analy-
sis for HSIs. In [17], spatial information was integrated into
the sparse graph learning process, and a spatial and spectral
regularized local discriminant embedding (SSRLDE) method
was proposed for the DR of HSIs.

The SGE-based methods can achieve state-of-the-art HSI
DR performances. However, as pointed out in [18], the sparse
coding used in SGE is helpful for learning only when the coding
is local. That is to say, under certain assumptions, locality is
more important than sparsity. Unfortunately, sparsity does not
always guarantee locality [18]. To overcome the drawback of
sparse coding in SGE, we propose a more robust DR method
named weighted sparse graph based DR (WSGDR) for HSIs.
WSGDR uses weighted sparse coding instead of sparse cod-
ing to explicitly encourage the sparse coding to be local. In
WSGDR, the test pixel is more prone to establish relations with
the pixels that are nearest to the test pixel.

II. PROPOSED METHOD

First of all, we introduce the notations adopted throughout
this letter. For hyperspectral data samples X = [x1,x2, . . . ,
xN ] ∈ RB×N , we have the corresponding class labels Z =
[z1, z2, . . . , zN ], where the class label of the mth pixel xm is
zm ∈ {1, 2, . . . , p} and p is the number of classes in the data
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set. Xi = [x1, . . . ,xi−1,xi+1, . . . ,xN ] denotes all of the sam-
ples except for the ith pixel. Y=[y1,y2, . . . ,yN ] ∈ RK×N

represents the low-dimensional features extracted from X, and
the corresponding DR projection is P. We let G={X,W} be a
graph, where X is the vertex set and W∈RN×N is the similar-
ity matrix for the vertex set X. The aim of the DR technique
is to find the matrix P to project the data X into the low-
dimensional space Y with Y=PTX while maintaining the
similarity or affinity between vertices in the original graph W.

A. NPE

Neighborhood preserving embedding (NPE) is an unsuper-
vised DR method which aims to preserve the local neighbor-
hood structure of the data. The first step of NPE, as introduced
in [12], is to construct an adjacency graph. Typically, there are
two ways to construct the adjacency graph.

k-nearest neighbors (KNNs): put a directed edge from node
i to j if xj is among the KNNs of xi .

ε neighborhood: put an edge between nodes i and j if ‖xj −
xi‖ ≤ ε .

The adjacency graph provides the neighborhood information
which can be used to compute the weights for each pixel in its
neighborhood. We let W denote the weight matrix, with Wi,j

being nonzero if pixel xj belongs to a neighbor of xi and 0 if
it does not. The weights related to the neighbors can then be
computed by minimizing the following objective function:

min
∑
i

∥∥∥∥∥∥
xi −

∑
j

Wi,jxj

∥∥∥∥∥∥

2

s.t.
∑
j

Wi,j = 1,

j = 1, 2, . . . , N. (1)

From (1), we can find that the matrix W denotes the weight
matrix which summarizes the contribution of the jth neigh-
boring pixel to the reconstruction of the ith pixel. After the
optimal coefficients are obtained, the third step is to compute
the projections. In this step, the DR is converted into solving
the following objective function:

P∗ = argmin
PTXXTP=I

∑
i

∥∥∥∥∥∥
PTxi −

∑
j

Wi,jP
Txj

∥∥∥∥∥∥

2

= argmin
PTXXTP=I

tr(PTXLsX
TP ) (2)

where Ls = (I−W)T (I−W) and I is the identity matrix.

B. L1-Graph

The adjacency graph effectively characterizes the pairwise
relations, while the relations between pixels can also be ex-
actly estimated by SR. Therefore, it is natural to construct
the adjacency graph by L1 optimization, since the L1 linear
reconstruction error minimization can naturally lead to SR for
pixels [11], [19].

Given a pixel xi ∈ X, the SR model aims to represent xi

using as few entries of X as possible, except for xi itself, with
the SR coefficient vector αi, which can be solved as follows:

argmin
αi

‖αi‖1, s.t. xi = Xiαi, i = 1, 2, . . . , N. (3)

Subsequently, the similarity matrix element Wi,j can be de-
noted as

Wi,j =

⎧⎪⎨
⎪⎩

αi
j if i > j

αi
j−1 if i < j

0 if i = j.

(4)

After obtaining the L1-graph matrix W, we can adopt the same
procedure as (2) to implement the DR of high-dimensional data.

In [11], a supervised version of the L1-graph named BSGDA
was proposed to implement the DR of HSI data. BSGDA
assumes that the SR of a labeled sample is estimated using only
the samples within the same class. As a result, the graph matrix
W obtains the block structure, which is more accurate for the
pairwise relations of the pixels.

C. WSGDR

The L1-graph explores the sparsity structure of the data and
has been widely used in the DR of HSIs. As described in
[20], sparse coding results in fewer reconstruction errors owing
to the overcomplete dictionary and is also robust to noise.
Unfortunately, due to the overcompleteness of the dictionary,
the sparse coding process may select quite different bases for
similar pixels to favor sparsity, thus losing the correlations
between similar pixels [20]. From another aspect, the locality
information, as pointed out in [12] and [18], is more important
than sparsity under certain conditions, as locality must lead to
sparsity but not necessarily vice versa. In addition, the locality
information can ensure that similar pixels will have similar
bases to construct the test pixels. In this letter, we propose an
improved SR method named WSGDR, which incorporates a
locality constraint into the sparse coding constraint to learn the
local SR of the test pixels.

Due to the superiority of BSGDA [11], we also describe a
block version of WSGDR. Suppose X = [X1,X2, . . . ,Xp] ∈
RB×N , where Xi ∈ RB×Ni are the samples belonging to the
ith class,

∑p
i=1 Ni = N , and xj

i denotes the sample selected
from the jth column of Xi. The proposed weighted sparse
graph solves the following weighted sparse coding problem:

argmin
αj

i

∥∥∥di,j ◦αj
i

∥∥∥
1

s.t. xj
i = Xj

iα
j
i , i = 1, 2, . . . , p,

j = 1, 2, . . . , Ni (5)

where Xj
i denotes training sample Xi, except for the jth

column xj
i ; the operator ◦ means elementwise multiplication;

αj
i represents the SR coefficient vector of xj

i with respect to the
dictionary base Xj

i ; and di,j is the locality descriptor, which
measures the similarity between xj

i and the other samples in
Xj

i . Specifically

di,j =

⎡
⎣dist

(
xj
i ,X

j,1
i

)

σ
, . . . ,

dist
(
xj
i ,X

j,Ni−1
i

)

σ

⎤
⎦
T

(6)

where dist(xj
i ,X

j,l
i ) = ‖xj

i −Xj,l
i ‖ is the Euclidean distance

between xj
i and Xj,l

i (denoting the lth atom of dictionary
Xj

i ) and σ is used for adjusting the tolerance for the locality
descriptor. A larger dist(xj

i ,x
k
i ) indicates a greater distance

between xj
i and xk

i , and it can effectively characterize the sim-
ilarity between the test sample and Xj

i . As a result, the coding
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Fig. 1. Coefficients of a test pixel belonging to the first class of the Pavia
University data set via different methods. (a) Coefficients of the L1-graph.
(b) WSGDR.

Fig. 2. OA values of the proposed method on the Pavia University data set with
respect to parameter σ.

coefficient of the weighted sparse coding tends to integrate the
locality and sparsity characteristics together. For a test pixel, the
weighted sparse graph computes the weight for a training pixel
according to the distance or similarity between the test pixel
and the remaining training pixels. It then seeks the weighted
representation of the test pixel with respect to the training pixels
based on the L1-norm. The goal of WSGDR is that, given a
test pixel, it pays more attention to those remaining training
pixels that are more similar to the test pixel in representing the
test pixel. In this case, WSGDR integrates the two properties
(locality and sparsity) together to improve the robustness and
representation accuracy of the test pixels.

It is clear that the WSGDR algorithm is an extension of the
typical L1-graph algorithm. In fact, if the locality descriptor
is set to an all-ones vector in (6), WSGDR degrades to the
L1-graph method. The superiority of WSGDR is demonstrated
in Fig. 1. This figure shows a test pixel belonging to the first
class of the Pavia University data set (the dictionary contains
100 atoms, which are sorted by the increasing distance to the
text pixel). Fig. 1(a) presents the coefficients of the L1-graph,
and Fig. 1(b) gives the results of WSGDR. It can be observed
that WSGDR can obtain sparser representation results, and in
addition, it selects the pixels that are nearer to the test pixel to
contribute to the SR. From another aspect, compared to NPE,
WSGDR offers data-adaptive neighborhoods, i.e., the neighbor-
hood data structures are not arbitrarily determined by a certain
neighborhood with a fixed and predefined similarity measure.

After the sparse coding, we then construct the graph as
follows. Suppose Wi ∈ RNi×Ni is the graph matrix of the ith
class sample; then, it can be denoted as

Wi
j,k =

⎧⎪⎨
⎪⎩

αj
i,k if j > k

αj
i,k−1 if j < k

0 if j = k.

(7)

Fig. 3. Scatter plots of the first two bands for the different DR methods on the
Pavia University data set. (a) Original. (b) LFDA [7]. (c) NPE [12]. (d) SGE
[14]. (e) BSGDA [11]. (f) Proposed WSGDR.

Fig. 4. Overall classification comparison of the different DR methods on the
Pavia University data set with respect to different dimensions.

As a result, the graph matrix of all of the samples is W =
diag(W1,W2, . . . ,Wp). We finally adopt the same procedure
as (2) to assemble the transformation matrix. Algorithm 1
illustrates the whole process of the proposed block version
of WSGDR. In the algorithm, the SPAMS package [21],1 is
adopted to solve the weighted sparse coding problem (5).

Algorithm 1 Block Version of Weighted Sparse Graph Based
Dimensionality Reduction (WSGDR)

Input: Data set X = [X1,X2, . . . ,Xp] ∈ RB×N , the desired
reduced dimensionality K .
Output: Transformation matrix P
for i = 1 to p do

for j = 1 to Ni do
Set di,j ← 1× (Ni − 1) zero vector (locality constraint
parameter)
Compute di,j via (6)
Weighted sparse coding via (5)

end for
Construct the ith class sample similarity matrix Wi via (7)

end for
W = diag(W1,W2, . . . ,Wp),

1Available: http://spams-devel.gforge.inria.fr/.
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TABLE I
OA (IN PERCENT), AA (IN PERCENT), INDIVIDUAL CLASS ACCURACY (IN PERCENT), κ, AND STANDARD DEVIATION OF TEN CONDUCTED MONTE

CARLO RUNS OBTAINED BY THE DIFFERENT DR METHODS ON THE PAVIA UNIVERSITY DATA SET (THE REDUCED DIMENSION IS K = 15)

Solve the generalized eigenvalue problem:
XLXTpk = λkXXT pk, where λk is the kth minimum
eigenvalue, and pk is the corresponding eigenvector.

Construct the transformation matrix P = (p1, . . . ,pK) ∈
RB×K

III. EXPERIMENTAL RESULTS AND ANALYSIS

The support vector machine (SVM) classifier was used to
evaluate the performance of the different DR methods in the
experiments. The LIBSVM toolkit2 was adopted to implement
the SVM classifier with a radial basis function kernel, and the
parameters were selected via cross-validation. Several other DR
methods, i.e., local Fisher discriminant analysis (LFDA) [7],
NPE [12], SGE [14], and BSGDA [11] were also implemented
for comparison. The codes for LFDA3 and NPE4 were down-
loaded online. SGE and BSGDA were implemented using the
SPAMS tool,1 which was also used in the proposed WSGDR.
We tested the proposed DR method based on the following two
widely used HSIs. All of the experiments involved independent
Monte Carlo runs, and the average overall accuracy (OA), the
average accuracy (AA), the kappa statistic (κ), and the standard
deviation are reported.

A. Experiments With the Pavia University Data Set

We first tested the proposed method on the Pavia University
data set, which was collected by the Reflective Optics System
Imaging Spectrometer (ROSIS-03). This data set has 115 bands,
with a spectral range of 0.43–0.86 μm. After removing 12 water
absorption and noisy bands, 103 bands were used in the experi-
ments. The data set is of 610 × 340 in size, and 42776 samples
containing nine classes are available. In the experiments, 5%
of the samples were used as training samples, and the rest was
used for testing. For the proposed WSGDR, the selection of
parameter σ affects the DR performance. Fig. 2 presents the
OA values of WSGDR on the Pavia University data set with
respect to σ. From the figure, it can be observed that the result

2Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
3Available: http://research.cs.buct.edu.cn/liwei/.
4Available: http://www.cad.zju.edu.cn/home/dengcai/.

is relatively stable with regard to the value of σ. This inspired
us to set σ = 1.4 in all of the experiments.

Fig. 3 illustrates the scatter plots for the different DR meth-
ods considering the first two bands or features. As shown in
Fig. 3(a), the different pixels are highly mixed in the first two
bands of the original image. Fortunately, after DR by the dif-
ferent methods, the discrimination of the pixels (from different
classes) related to the first two bands is greatly enhanced.

Fig. 4 presents the OA values of the different DR methods
with respect to the reduced dimension numbers. In the figure,
the result of SVM on the original Pavia University data set is
used as a baseline. As depicted in Fig. 4, the proposed WSGDR
outperforms the other methods in almost all of the cases. In
particular, WSGDR outperforms BSGDA and NPE in all of the
dimension cases. That is to say, the neighborhood information
and sparsity property are both important for the analysis of HSI
data. In addition, we also used a reduced dimensionality of K =
15, and we present the mean OA, AA, individual class accuracy,
κ, and standard deviation of ten Monte Carlo runs obtained by
the different DR methods in Table I. From the table, we can
again see that WSGDR outperforms the other methods in terms
of OA, AA, and κ values.

B. Experiments With the AVIRIS Indian Pines Data Set

The second data set used in the experiments was acquired
by the NASA Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) instrument over the Indian Pines test site in
Northwestern Indiana in 1992. The data set size is 145 ×
145 pixels and 220 bands. In our experiments, the noisy and
water absorption bands were removed [22], leaving a total of
200 bands. A total of 10249 samples containing 16 classes are
available, of which 10% was used as training samples and the
rest was used for testing.

Table II presents the mean OA, AA, individual class ac-
curacy, κ, and standard deviation of ten Monte Carlo runs
obtained by the different DR methods on the Indian Pines data
set. It can again be observed that the proposed WSGDR method
outperforms the other methods. Notably, LFDA performs even
worse than the baseline SVM on the original data. This is
mainly because LFDA is sensitive to the number of nearest
neighbors, and it fails in the case of a low number of training
samples (e.g., alfalfa, grass-pasture-mowed, and oats).
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TABLE II
OA (IN PERCENT), AA (IN PERCENT), INDIVIDUAL CLASS ACCURACY (IN PERCENT), κ, AND STANDARD DEVIATION OF TEN CONDUCTED MONTE

CARLO RUNS OBTAINED BY THE DIFFERENT DR METHODS ON THE INDIAN PINES DATA SET (THE REDUCED DIMENSION IS K = 20)

IV. CONCLUSION

In this letter, we have proposed a novel WSGDR method for
the DR of HSI data. The proposed method learns a weighted
sparse graph which computes the weight for a training pixel
according to the distance or similarity between the test pixel and
the remaining training pixels. It then represents the test pixel by
exploiting the weighted training pixels based on the L1-norm.
WSGDR integrates both the locality and sparsity structure of
the training pixels. The proposed method was compared with
other DR methods on two HSI data sets. The experimental
results confirm the superiority of the proposed WSGDR, with
better performances and higher classification accuracies.
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